人脸图像特征提取
人脸图像特征提取:人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数 特征等。人脸特征提取就是针对人脸的某些特征进行的。人脸特征提取,也称人脸表征,它是对人脸进行特征建模的过程。人脸特征提取的方法归纳起来分为两大 类:一种是基于知识的表征方法;另外一种是基于代数特征或统计学习的表征方法。
基于知识的表征方法主要是根据人脸的形状描述以及他们之间的距离特性来获得有助于人脸分类的特征数据,其特征分 量通常包括特征点间的欧氏距离、曲率和角度等。人脸由眼睛、鼻子、嘴、下巴等局部构成,对这些局部和它们之间结构关系的几何描述,可作为识别人脸的重要特 征,这些特征被称为几何特征。基于知识的人脸表征主要包括基于几何特征的方法和模板匹配法。
人脸识别(Face Recognition)技术是一项非常重要的生物特征识别技术,同其它的生物特征识别技术(如指纹识别、步态识别和虹膜识别)相比,人脸识别具有简便性、非接触性和不侵犯个人隐私等特的优点,这使得在近年来,人脸识别受到越来越多研究者的关注,特别是主成分分析方法(Principle Component Analysis, PCA)和线性鉴别方法(Linear Discriminant Analysis, LDA)在人脸识别中的应用之后,人脸识别在日常生活应用领域不断扩大,如出入境检查、门禁系统、安检以及机场的安检等方面。
人脸识别技术是生物识别技术领域内的一个分支,是继指纹识别之后受关注的一项生物技术,但是目前也出现伪装人脸行为进行欺诈,这种对合法用户人脸的假冒行为已经成为人脸识别与认证系统的重要威胁。当前活体人脸检测技术主要集中在人脸细微动作、3D人脸重建、红外人脸检测三领域的研究上,该文主要浅析这三类检测技术的原理,并总结分析了各技术的特点及优劣。
作为人工智能早落地的领域,从图像识别、识别、人脸识别,人工智能技术在安防领域的快速推进,加速了安防各大技术的迭代。近几年,随着人脸识别技术的快速发展和应用,人脸通行方案快速在市面上推动和落地,因智能、快捷、安全等方式广受青睐。以往的传统通行方案通常采用、指纹、二维码等方式进行出管理,实现人员通行,如今随着新兴的人脸识别技术搭载,通行方式起到了天翻地覆的改变。这两年,依托于人脸识别技术的兴起,人脸快速通行方案在市场上迅速推行。以往的人行通道解决方案一般采用、二维码、指纹等进出等传统方式来实现人员管理。如今,随着人脸识别技术的不断成熟,人员通行也有了**的改变。